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ATOMIC PHYSICS AND NON-EQUILIBRIUM PLASMAS

Jon C. Weisheit
Physics Department

The purpose of these three lectures is to provide a fairly general introduction to the
atomic phenomena that play an important role in the behavior of non-equilibrium
plasmas. Because I must present many topics, no one of them can get much attention.

First, let me give some working definitions of terms used above:
atomic physics: structure of atoms (usually highly ionized); collisional and radiative

interactions among electrons, ions, and photons; ionization equilibria; and spectral

line shapes.
non-equilibrium plasma: a plasma of electrons and ions, in which the atomic level
populations are not generally given by classical (Maxwell-Boltzman) or quantum

(Fermi-Dirac) statistics. However, particle velocity distributions are assumed to be

statistical, being characterized by a well-defined temperature, T.

I will invariably assume that electrons and ions have the same temperature, but the
generalization of my comments to cases where T e"Ti is quite straightforward.
Generalization to cases where T is undefined certainly is messy numerically, but again is
straightforward in principle. And finally, I shall make no restrictive assumption about the
radiation field - - it nay or may not have a simple characterization.

Also, I want to recommend a few texts to you, so that you can follow up my
comments with much more detailed reading, if a particular subject interests you.

1. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron
Atoms (1957).

2. N.F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (1965).

3. H. A. Bethe and R. Jakiw, Intermediate Quantum Mechanics (1968).

4, 1.1 Sobelman, Atomic Spectra and Radiative Transitions (1979).

5. 1. 1. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and
Broadening of Spectral Lines (1981).

6. R. D. Cowan, The Theory of Atomic Structure and Spectra (1981).
With these prefatory remarks out of the way, let's turn to the subject at hand.



LECTURE #2: ATOMIC STRUCTURE

This first lecture discusses atomic structure - primarily theory, but also some
experimental data. Our topical order is: :
1. Non-relativistic one-electron atom

Relativistic one—electron atom

Non-relativistic many-electron atom

a. Central field approximations

b. Configurations and wavefunctions

¢. Angular momentum
4, Relativistic many-electron atom

The H en Atom (Non-Relativisti

The purpose here is not to bore you with a discussion of assoclated Laguerre
polynomials; rather it is to remind you of some basic facts, and to introduce notation we
will often need later.

The time independent Schrédinger equation for hydrogen is

-2 g,y o)
~2u +V(r) -E[J 11[.(1' =0, (2.1)
where the potential energy is

V(r) = - z:’ , (2.2)

Ze is the charge of the nucleus, u ~ m, is the reduced mass, amlEI. is the eigenvalue of
the quantum state "I'". As you probably recall, three quanturmn numbers are needed to
completely label the solution y(r):

n = principal quantum number
' » { % =orbital angular momentum quantum number

m, = azimuthal (or projection) quantum number

Their allowed values are:

n=1,23...; +=0,1,...,n1 ; my = -2,-0+1,...,2%-1,¢. (2.3)
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In spherical polar coordinates we write

1 -
¥ {) =¢n,m!(3 Py Yy, @ . (2.4)
where the spherical harmonic Y is a function of the spherical polar angles (6, @) = (1.') of 1-':
and where the radial function is the solution of the second order equation (cf Bethe and
Salpeter)

2uE 2
" ' 2uZe 2(2+1

As in other fields of physics, a particularly convenient set of units suggests itself for
atomic physics calculations. We often will use the following ones:

charge: the proton charge, e =4.80325x10"*° esu

mass:  the electron mass, m_=9.10956x10" " g

length:  Bohr radius, a, = h¥/m e =0.529177 A
energy: atomic unit, x's’/a.o = 2Rydberg = 2(13.60583 eV)

{ie, wepute = h = m, = 1.} For most calculations one can approximate the reduced
mass asm_, and then, for example, the radial equation takes the form

Poy(®) + [Ep + 22/ - 2(2+1/e*1P_ (1) =0 . (2.5b)

Henceforth, if units are not mentioned, atomic units have been adopted.
Some P es of the H en Atom

Although the solution of Eq. (2.1) requires us to define the three quantum numbers
(n, 2, m,.). the hydrogenic engenvalues depend only on n:

Eom_ 2 (2.6)

There are (22+1) possible magnetic substates for each -value and n possible angular
momentum states for each principal quantum number. We can trivially compute the
number of degenerate eigenstates to be

nil 2 @7
= (2+1) =n" . .
*n =0 *



Now, the spherical harmonic functions, which are the eigenfunctions of the angular
momentum operators £ ° and Q.z. are orthonormal,

(Y, | Ypere ) =854, & . (2.8)
Q.mg 2'm s L' m ga'y
but the radial functions satisfy only the incomplete orthogonality condition
(2.9)

1 1
(+Pne l tP e} = ann"

One other important property of the eigenfunction \F(_r') is its parity. Recall that the
->

parity operation Q corresponds here to a reflection through the origin, viz. -7 We
have, therefore,

ov@- tP maY, ®=-c0'vd . (2.10)

States with =0, 2, . . . , etc. are called even parity states, while those with odd

L-values are called odd parity states.
So much for theory. What are the facts? In this instance, the “facts" are spectro-

scopic data that reveal the wavelengths )‘I‘I" corresponding to the I'>I'' transitions:

1 Z3%2 , 1 1
= 20— -—=1, (2.11)
er, 41rao a'? a?

with a = e?/fic = 1/137 being the fine-structure constant. One example is reproduced
here, the 4686A line of He', corresponding to the (n=4) - (n'=3) transition. Evidently, our
physics is incomplete, since Eq. (2.11) predicts a single transition wavelength, independent
of the values of £ and {°, andm! a.ndm;.

What are missing are the complications introduced by relativistic effects, such as
m, = me(v). and the existence of electron spin. By using first-order perturbation theory
(v/c << 1 in hydrogen), Sommerfeld, Uhlenbeck and Goudsmit, and Thomas all made
contributions to extend Schridinger's theory and obtain satisfactory agreement with
experimental data available at that time. However, the perturbative treatment is
inadequate for heavy atoms, wherein there are bound electrons with speeds v ~ Zac.
Further, not all the terms in the relativistic Hamiltonlan have classical counterparts.
Therefore, instead of tracing the historical development of the theory of fine structure,
we shall obtain the correct formulae from Dirac's (1928) relativistic wave equation for

spin — 1/2 particles.



ll'lrjj"l

Intensity —

l 1 l;l [ | IR’L

4686.9 4685.6 4684.3
<\A

FIG. 2.1. The He' 4686A line at high resolution.

The Dirac Equation for Free Particles of Spin 1/2

As a preliminary comment, we note that the existence of spin angular momentum h
for the electron, with just the two eigenvalues m, = 1/2 for its projection onto a
quantization axis, had been postulated in 1925, before Dirac's work. A convenient choice
of basis functions for the spin operator s is ((1,) and ((1)); in this representation we have

g2 _(34 0 fo 12 _{o -1/2) g vz o
“\o 34)'%=\12 o)'Sy=\42 o/'%z2"\0 12"

These matrices play an important role in the Dirac theory.

It is readily apparent that the Schridinger equation (SE) is not invariant under a
Lorentz transformation, since space and time derivatives are not of the same order. An
obvious relativistic analogue of the SE is obtainable from the energy formula for a
particle of rest mass m.,,

2 2 4 (2.13)



plus the correspondence principle, viz.,

h 8 . L
E-’-iat'pk-’iaxk' (2.14)

This gives the Klein-Gordon (KG) equation,

2
1 32 of c
[Vi- = & Jw¥= ¢ ) ¥ .
o ap? 52 (2.15)
Because of problems with specification of 'gTW at some initial time, and the possibility of
negative probability density, the KG equation was ignored at first.*
As you may remember, Dirac's solution to these difficulties was to formally extract
the square root of Eq. (2.13), by writing

3
_ 2 2 2 -
E/c -+\/k§1pl +m ¢ _i: @ P, +Bmoc (2.16)

The four quantites { al.uz,u3.ﬂ} clearly are not just numbers, but they do satisfy an
algebra whose rules are gotten by squaring Eq. (2.16) and requiring the result to be the
same as Eq. (2.13). When this is done, and the correspondence principle invoked again, one
has the Dirac equation for a free particle:

3
h_d ch d -
[+ I aa— +Bm c”) ¥(r,t)=0 . (2.17
1ot "1k kax o
Of course, what we have at this point is of no real value, since we cannot do any
calculations without knowing what g and the a.k's are.

Details:
We can employ the relations used to obtain Eq. (2.17), and then perform a series of

manipulations in order to be able to make the following statements (cf. Bethe and Jakiw):
1.  The four operators Y=~ iBa.k (k=1,2,3) and V4= 8 anticommute, viz yuy“ +
Yqu = zsuv .
2. The matrix representation of these four operators must have a dimension N
that is even.

*It was revived a few years later by Pauli and Weisskopf, who reinterpreted it. However,
it is not satisfactory for spin-1/2 particles, as it does not lead to agreement with

spectroscopic data.
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3. A representation of dimension N=2 can accomodate only 3 anticommuting

operators.
4, Therefore, N=4 is the simplest representation of the Yu'

Although there are innumerable equivalent representations the one adopted universally is

0 o 1 0
a-( ) . Ba( ). (2.18)
g O 0 -

where I is the 2 x 2 identity matrix and o = 2s, with s being the spin matrix of Eq. (2.12); o

is usually called the Pauli matrix.
Because the Dirac operators are of dimension 4, the relativistic wavefunction ¥(r,t)

must have 4 components. For reasons to become apparent soon, we first write ¥ in terms
of two, 2—-component vectors:

¥, @
Y@L = L |- (2.19)
\I'B (r.t)

For a free particle we can put \F(i::t) = w(ﬁe'mt/f'. and then obtain the pair of equations

coe B¥y @+ (m ¢’ -Ew, B)=0,

coe By, (- (m, c*+ E) iy D=0 , (2:20)

Ifwechooseaframemwl'ﬂch'p’=0. mmwAistheeigenfmctioncorrespondingto
positive energy solutions, and "’B to negative energy solutions. (We will not discuss the
"positron sea” here.) This accounts for two of the four components.

The existence of two more components, still with the same energy (remember, this
is a free particle), suggests that there is some observable which is a constant of the
motion, in addition to P:

dp

= - FHel-0. @21
Following our classical intuition, we guess first that it is the orbital angular momentum
£. But one can directly calculate



at

i
% ~tH T =caxp, (2.22)

which, in general, is not identically zero! Either we must forsake conservation of angular
momentum, or we must generalize our definition, adding to T some quantity £ whose time
derivative is the negative of Eq. (2.22). This requirement, plus the general property of
angular momentum operators, E x L =i E, can be satisfied by putting

8 0
L= . (2.23)
0 8

Thus it is not i’, but rather

+ -3 f
J = Yitw f+'2'. (2.24)
which is conserved for a spin-1/2 particle.
Finally, if we inspect the eigenvalue equation
-+'I'1-
8 0 =¥
5, ¥ = ( : ) ¥eg=-g. 2| (2.25)
0 sz +"{-'3

we see that the other two components of ¥ are needed to represent different spin states
of a Dirac particle,

Dirac Particle in an External Field
To treat the relativistic effects of an electromagnetic field, including the Coulomb
field of the nucleus, we begin with the time-independent free-particle Dirac equation,

(H- EW() = (c ae H+ﬂmﬂc=-E}t|r{ﬂ -0, (2.26)
and make the familiar replacements for a charge q,
poTm= 3—q3fc.E+E—q¢. (2.27)

involving A and ¢, the vector and scalar potentials of the field. These substitutions must
be justified by comparison with experiment; fortunately, the agreement is excellent.
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The exact solution of the Dirac equation leads to two coupled (1st order) differential
equations for the radial parts of A and “'B' Instead of discussing these equations, we find
it more instructive to summarize the analysis of Pauli, who obtained an approximate
equation for the positive-energy solution ¥,, in the limit that E - moc2 << moc’. It
turns out that the Pauli equation is exact to order (v/c)>.

Suppose we replace, in Eq. (2.20), the term E+m oc’ by 2m ocz . Then,

-2
gep Y.
*B = 2 "rA ~ (E) "’A . (2'28)
2moc

The basis of Pauli's approximation is to insert this result into the companion equation,
getting an equation for just ¥ A

(c agﬁ) (cagg") 2
me"  -E)|y, =0 . 2.29
[ Zmoc’ T o A (2.29)

If we stop here, and use the correspondences of Eq. (2.27), we obtain the non-relativistic
Pauli equation,

2 S _qh >
[(m c*-E+qe) +2m°(p-qA/c)’ - 7m o ge (VxK)]wA =0 . (2.30)
Evidently, at this stage, the two components of ¥ A differ only because of the (small)
spin-dependent term, which represents the interaction of a magnetic field and a magnetic
dipole moment,

- qh_ -
H = m o o, (2-31)
o
This term causes part of the normal Zeeman effect.
The relativistic Pauli equation is gotton by performing another iteration, viz.
1. Solve Eq. (2.30) for v Al
2.  Substitute this into Eq. (2.28) and obtain an improved ¥gi and
3. Use improved "'B to get new ¢ A
A lot of algebra is necessary; the result is an equation with the Hamiltonian
H {Pauli} = H{n-rel.Pauli} + H{rel. Pauli} , (2.32)



where the non-relativistic part is the Hamiltonian of Eq. (2.30), and where the relativistic
correction contains five terms. They are:

- L —m c* -E+a)?. : (variation of mass with velocity),  (2.33a)
m c
o
- ic Re 3 . : (source of Larmor precision; the (2.33b)
rest of normal Zeeman effect) ,
2 Az :
+ 2 : (quadratic Zeeman effect), (2.33¢c)
Zmoczz
igh [( 9. ®) o —b] : (Darwin term; interaction of electric
+ (2m_c)* - pl. field and effective electric dipole (2.334)
[o] deff = - iQflp/ (2m0c) )- )
- —Aﬁ—z 1 o[ (- Vcb) x 3 ] : (interaction of moving charge and (2.33¢e)
(2mgc) effective magnetic field <(V¢) x p; this

term yields spin—orbit energy in atoms).

None of the first three terms involve the particle spin d, and all can be obtained from
classical analogs (h - 0).

The Relativistic H en Atom

For the H-atom problem, we must put

Ze
Q=-em=m_ =3, 2=0.

Then, for instance, the spin—orbit interaction of Eq. (2.33¢) becomes (atomic units)

2
B --% 1 %(‘5. B-+2 1.y, (2.34)
r

If we use perturbation theory to evaluate the relativistic and spin-dependent terms
in the Pauli Hamiltonian, the result is a first—-order corrected eigenvalue (atomic units),

M 0 a2 1 3
Ewj =B - o <j+1l2 - 4n)' (2.35)



Apparently, all states having the same values of j and n are degenerate (viz. E(l) is
independent of %, m,, ms). This is even true for the exact result,

-1/2

1 (Zaf -
e _ _1 (2.36)
Enn.j a? [n - (}+1/2) + ./(j+1/2)2 - (Za)’_r «

which agrees with Eq. (2.35) through terms of order (Za)’. Quantum electrodynamic
effects (e.g., Lamb shift) are of order (Za)*, and since these are not part of the Dirac
formalism, it doesn't make much sense to expand the exact result to this next order. The
number of (l.m,.. ms) combinations that can be assoclated with a given (nj) pair is gm =
2j+1. Since j takes on values from 1/2 to n-1/2, the total statistical weight of all states
having a given n is g =2n". This is twice what is given by Eq. (2.7) because now we also
have two spin states, m = +1/2, for each (nlm’.) possibility.

One reason we have spent so much time on hydrogen and these small corrections to
its eigenvalue spectrum is that, as Z gets large, the corrections no longer are small. Some
examples of this fact are given in the accompanying table and figure. The second reason
is that our concepts and equations for treating many-electron atoms are extensions of the
one—electron—-atom formalism.

TABLE 2.1. Hydrogenic energy data [from G. W. Erickson, J. Chem. Phys. Ref. Data, 6,
831 (1977) ].

Z E(Zp,,) AE(2py,,.2P, /5) AE(2s, 5. 2Py /)
1 _3.40 eV 452 eV 437 eV
30 _3070. 37.9 0.960
100  -35200. 6920. 7.9

Note: the (Zp3 /2.291 ,2) splitting is due to fine-structure terms, while the (2p1 /2 2s1 /2)
splitting is due to radiative corrections (Lamb shift).

Many-Electron Atom (non-relativistic)

Most atomic processes we are interested in involve the transition of a single bound
electron from one quantum state to another. For this reason, it is particularly convenient
to describe an N-electron atomic wave function as a product of 1-electron orbitals vi:

2—10
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100

Z=1, 30, and 100

1s Charge diistribution
o
F-9

0.2

Z X r{au)

FIG. 2.2. Charge distribution for a Dirac 1s state (courtesy of J. Scofield, private
communication).

°I' (1,2,3, ... .N)= 1|rY1 (1) 1’72 2 .. .WYN (N) . (2.37)

In fact, this would be the true form of ¢ if the atomic Hamiltonian were just a sum of
l-electron terms,* viz (in atomic units)

H » WM. z H{) = ):[_ v 1% i. (2.38)
i=1 i

and did not include the electrostatic interactions among all pairs of electrons,

N
@y 1 (2:39)

i

* For the time being, we ignore fine-structure effects and symmetry requirements.
These complicate the mathematics but do not alter the arguments we want to develop.
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The purpose of the central-field approximation is to retain the form (2.37), by assuming
that each electron can be treated as moving in some averaged effective field of all other

electrons.
D. R. Hartree proposed a self—consistent field (SCF) scheme, wherein the effective

potential for the ith electron is
Vi) =-2 43 Jave) v @) . (2.40)
i ry +j¢i i i T ;]

The basic idea is easily visualized by the flowchart which follows. The justification of
this scheme follows from a variational calculation in which the energy <0 |H|®> is
minimized, subject to the N constraints that each orbital remains normalized; it turns out
that the Lagrange multipliers ¢ 1 are the 1-electron orbital energies.

I=0

Guess {*(0)

!

—| Calculate (V())} ’
3

I=1+1 Obtain spherical averages, {V(r,) }

[} i

Solve [ - %Vi’ +V(ri) - ci] v (I"l)(r'; =0
d

Compare {(¥*1}): )}
i
satisfactory agreement, QUIT

2—12



N-Electron Wavef' : C ations

The central field approximation is basic to nearly all atomic structure calculations,
and so we now devote some time to discussing the product wave function 0[. of Eq. (2.37).
This discussion will lead us into the abyss of angular momentum coupling, but first we
need to establish some important symmetry results.

By definition, elementary particles of a given kind are indistinguishable from one
another. Thus, the Hamiltonian of an N-particle system is not affected by any
re-labelling we might choose to do of these particles,

H(1,2, 3, ...,N=H(2,3,1, ... ,N)= etc.
This can be formalized by defining permutation operators II for which we can write
I,H)=0 . (2.41)

(In this case above II had the effect of exchanging 1 and 2, and then 1 and 3.) For an
N-particle system, there are N! possible permutations "p", each of which generates a
particular wavefunction II p°[" Some of the N ! wavefunctions so formed will be linear
combinations of others, but many will be linearly independent - this is the manifestation
of exchange degeneracy.

It is an observed fact of nature that only certain wavefunctions are actually
realized, and that all physical wavefunctions have a particularly simple property with

respect to two-particle interchange, ll(i—]),
+ & p: symmetrical state.

N(ie—)or = (2.42)
~ 9 r: antisymmetrical state.

All many-electron wavefunctions require the (-) sign. A convenient way of contructing
products & with the correct symmetry is by means of Slater determinants. If, for
example, we have a 3-electron system, in which the electrons occupy quantum states a, b,
and ¢, we write

\Ira(l) 'lrb(l) ilrc(l)
1 .

°abc(1' 2,3)= /'?_" ¢a(2) 1Irb(2) 1Irc(2) (2.43)

llra(3) 03 ¥, (3)
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The factor (N !)"1/2 is for normalization. An interchange of particles corresponds to an
interchange of rows, which changes the sign of the determinant. In this form, the Pauli

exclusion principle is transparent:
No two electrons in a given system can occupy the same quantum state.

As we noted above, if the electron-electron interaction energy, Eq. (2.39) were
negligible, then a product wavefunction of the form (2.37) would be a correct representa-
tion of the atom. And, in this simple case, the complete specification of the quantum
state I' would be the orbital configuration, the listing of (n,%)-values of all the different
electrons. For instance, the ground-state configuration of uranium is

(15)? (25)* (2p)* (35)* (3p)® (3d)*© (48)* (4p)® (4d)*© (4f)*+¢
(Ss)2 (Sp)¢ (5)* © (S5£)* (68)* (6p)* (6d) (78)*

The exponents indicate the nmumber of equivalent electrons, i.e., those with the same
(nf)-values; and the standard spectroscopic notation has been used:

2 l 0 1 2 3 4 S

designation I s P d f g h

Because of the Pauli exclusion principle, the maximum number of electrons in an atom
that can have the same values of (n,%) is 2(22+1). A given (n,2) pair is called a subshell.

Unfortunately, a Hamiltonian like Eq. (2.38) is accurate only in the limit Z >> N.
The real world is more complicated, much more complicated: there are many more states
in atoms than can be generated just by changing electron orbitals. How do we go about
describing these states? A basic postulate of quantum mechanics tells us that, for any
quantized system (= atom), there is a maximal number of physical quantities that can be
measured simultaneously. The actual number depends on the system being observed. All
of the operators corresponding to these observables must commute with one another.
Thus, if there are v such operators {l\“} for a given problem, and their eigenvalues are
xl. }‘2' etc., then in Dirac's ket notation a quantum state of the system is

IT >=|k1,xz.....x“>. (2.44)
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We definitely want to characterize each atomic state by its energy, so we seek operators
that commute with H. How many do we need? The answer is that, in addition to
specifying the configuration, we need 2N, where N is a sum over unfilled subshells of the
following quantity a:

if number of subshell e~ isp < 2 + 1, D=p

if number of subshell e~ isp > 20 + 1, n=2(22+1) - p

For example, the ground state of uranium requires 2(3+1) = 8 quantum rumbers, because
of the unfilled (5f)® (6d) subshells.

Most early work in spectroscopy dealt with the light elements (me < 26), for which
at worst there usually is an open (2p) or (3p) subshell. Therefore, the most quantum
numbers needed then was 2(22 + 1) = 6. In 1925, Russell and Saunders showed that the
main features of complex spectra could be understood when the atomic states are
characterized by the composite orbital and spin angular momenta,

-

N N
L= ¥ f ad §- % 8 . (2.45)
i=1 i=1
both of which can be shown to commute with the central field Hamiltonian. Fine-
structure effects require one also to specify the atom's total angular momentum
T-L+ 3, (2.46)

and, if the atom is subjected to an external electromagnetic field, one must in addition
specify the eigenvalue of J 7’ commonly denoted M. Thus, in the Russell-Saunders
scheme, we write for Eq. (2.44)

| T > = | configuration specification; LSIM > . (2.47)

(The remaining quantum numbers are intermediate (LS) and “seniority" numbers, which
were introduced by Racah in the 1940's.)
The standard spectroscopic notation is:

25+1 L L I 0 1 2

3 Jwith desigmtionlSPD
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The following nomenclature is encountered frequently in comnection with state
designations.

singlet, S=0
MULTIPLICITY: (2S +1) = { doublet, S =1/2
triplet, S=1
25+1
TERM: L
2S+1
LEVEL: I—

J

Why does the Russell-Saunders scheme work so well for light elements? The answer
lHes partly in the "goodness” of the central field approximation, and partly in the

interactions not included in that picture. Specifically, these missing parts, and their
relative mangitudes are

Exchange interactions non-spherical fine-structure
( ) > < ) > ( > (2.48)

due to ¢ antisymmetry pa.rtofV(f'S

The angular momenta S, L, J, in some sense characterize these effects, respectively.
Figure 2.3 illustrates the break-up of a configuration into levels.

interactions

1 P 1
/— 1 P1
Vi D 1
$=0 e D,
’,F (Singlets) N 1¢ .
/ 3
!
:I 2
3 3
/ — P <z ',/:-0 Po,1,2
4p4d \ / D » - 3 3
\\‘ s‘ = 1 I\‘,’f €<= 1 D1 'z '3
(Triplets) o 3p o a i
~ 2 2,34
Unperturbed Exchange- Residual Spin-orbi
state + correlation +  electrostatic  + pin-orbit
energy energy energy

FIG. 2.3. The development of level structure in L-S coupling.
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Cou; of Momenta

So far, you have heard good news — the LSJ representation works well for light
elements. Now for some bad news.

Bad News Item #1: In defining L, S, and J, I did not tell you how the angular
momenta are to be added. You remember “vector addition" from your introductory
quantum class so that ilz = 31 + i'z ranges in magnitude from I'!l—i'zl to |i’1+§.’2|. in
integral steps. Of course, it is trivial to extend this, one §-value at a time. But, what if I
choose one scheme, and you another:

-

ME: ('il J.z) + 1‘3 = 1’123 YOU: 11 + (‘!2 + I

)=Lig3 -
Even if we have the same 1'123 values, our product wavefunctions will not be identical!
They will, however, be related by a unitary transformation, which can be thought of as an
angular momentum re-coupling.

The addition of and recoupling of angular momenta is beautifully handled by Racah's
methods, which give rise to the 3n—j symbols, such as

( 2, 8,0, )
22,0, 2, 2,2,
» » 1 31 82 812 ‘ » etc.
m; my,my, 518282
\hzd2 )

Modern atomic physics literature is replete with these quantities. We cannot delve into
their properties in these lectures, but when you encounter them, mentally replace them by
some number whose magnitude is less than 1. If necessary, actual values can be gotten
from extensive tables, such as M. Rotenberg, et al., (1959) "The 3-j and 6—j Symbols."

Bad News Item #2. When Z is large, say Z > 30, the LSJ scheme fails. That is
because the ordering of effects is no longer that given by Eq. (2.48). The first two terms
scale approximately as Z, but the fine-structure interaction scales as Z* and eventually
overtakes the others. When this happens, §, and # of an individual electron interact
strongly, and one needs to adopt what is called i coupling:

N
7.=%4+5: T =3¢ 7, . (2.49)
i 1+ 5 1=li
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In jj coupling the orbitals are

f (2.50)

81/2' P/ Paszr 9370 95/00 E5ypr - - -

and in an atom, no more than 2}+1 electrons can have the same (ngj)-values.

In principle, all necessary re-coupling can be accomplished via Racah methods, but
in practice this gets very complicated. What's worse, in a large number of interesting
systems the true coupling is “intermediate" to LS and }j, since all three terms in Eq. (2.48)
are comparable. One example, for the p? configuration, is shown below, where level
energies are plotted as a function of x ~ (spin—orbit interaction) + (electrostatic
interaction). The notation on the right hand side of the figure is (jl jz)J 12°

Bad News Item #3. Yet another complication is tht energetically adjacent states
belonging to different configurations can interact with each other, which then requires
the wavefunctions of these configuration-mixed states to be represented as linear
combinations of single-configuration states such as Eq. (2.47).

10 ] I 1 —[ | I T I | DL D ' T 1 lj ' 2
Sil Gel Selll SnI p
é . <410
PbI Bill
o (M (3/23/2),
BrIV | Sbll Telll 5
312 3/2),
0 <~
D, 0
(32 1/2),
5 31212, -5
| (12172),
? -10
I N T T T |
0.1 03 05 1 0.6 0.5 0

FIG. 2.4. Transition from LS coupling to jj coupling for the configuration p°.
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Relativistic Many-Electron Atom (a précis)
G. Breit* generalized the Dirac Equation to the two-electron atom. His relativistic

Hamiltonian is

ea
T2

H(L,2) = Hy(1)+Hy(2)+

(@, oFy.) (@, o Fy,)
by Sk ¥ ) g_] @.51)

2
2ry,

[1 -
In this equation a, and a, have the same form given by Eq. (2.18), but operate,
respectively, only on electron 1 and 2; HD is the l-electron Dirac Hamiltonian of Eq.
(2.26). The correction to the term e”/r,, is called the Breit interaction. Although this
Hamiltonian is not fully Lorentz invariant (the Breit interaction itself is only
approximate), it is the starting point for many N-electron systems.

To obtain a tractable Hamiltonian, good for modest (Za), Bethe and Salpeter carried
out what is equivalent to the Pauli approximation and obtained a Hamiltonian for the
large component. In addition to the 1-electron Pauli terms, in Egs. (2.30) and (2.33), their

derivation produced terms representing:

retardation of 1/ry5 interaction;

interaction of s'i and s‘i;

interaction of s'i and f’z; and E’z and ﬁ (spin~other orbit);

spin—orbit interactions « § ¢’} and 5.+, but which involve the electric field
of the other electron, instead of the nuclear electric field.

R A e

All of these terms, plus any radiative corrections, are invariably treated as perturbations
(see, especially, Drake, (1982), "Advances in Atomic and Molecular Physics," Vol. 18). At
best the structure of heavy systems is computed using a central field approximation, but
with the one-electron orbitals being solutions of a Dirac equation with a non-Coulombic
V(r).

The current computational status of things is summarized in Table 2.2.

The Nucleus
As a last point, we mention that all our discussion so far has assumed the nucleus to
be a point charge with infinite mass and no angular momentum. The fact is that all of

*Phys. Rev. 34, 533 (1929); 36, 383 (1930); 39, 616 (1932).
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these assumptions are, in general, wrong. This is revealed in small but interesting
perturbations of electronic states. Again, we are forced in Table 2.3 merely to
summarize these effects; elaborations are to be found in the texts we cited at the
beginning of these lectures.

TABLE 2.2. Central Field Calculations.

Well-documented
Name Hamiltonian Wavefunction Computer codes
Hartree non-relativistic product of 1-electron many
no exchange interactions orbitals
no fine-structure
Hartree-Fock non-relativistic Slater determinant C. Froese-Fisher
no fine-structure (1 or more)
Hartree-Fock- non-relativistic Slater determinant J. Desclaux
Slater approximate exchange (1 or more)
interaction
no fine—structure
Dirac-Fock relativistic Slater determinant J. Desclaux
(1 or more) 1. Grant
Dirac-Fock- relativistic Slater determinant -
Slater approximate exchange (1 or more)
interaction

TABLE 2.3. Nuclear Effects in Atomic Structure.

¢ Finite mass changes reduced mass, causes isotope shifts

¢ Finite size causes departure of ¢(r) from pure Coulomb inside mucleus; level
shifts depend on nuclear shape and volume.

e  Angular momentum causes hyperfine splitting of atomic levels,
B, =T +7

atom nucleus electrons
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LECTURE #3 - RADIATIVE AND COLLISIONAL TRANSITIONS

In the preceding lecture, we discussed the eigenvalue problem for atomic systems.
From this point on, we assume that solutions of the SE,

[H(atom) - Er] *r =0, (3.1)

are available at some level of approximation. In this lecture, we consider the problem of
transitions between atomic states caused by interactions with radiation or other
particles. Frequently, such problems are treated within the context of perturbation
theory.

Resumé of Perturbation Theory

Dirac's "variation of the constants" method gives the amplitude ar.r(t) for the
atomic transition I'>T'' , due to the action of a time-dependent perturbation V(t):

t

(7 .
i r'r
app®)=- f Vpplt) e at , (3.2)
-, . )
where ~

are the transition matrix element and the transition energy, respectively.
One class of problems is represented by perturbations that turn on and then turn off,
and vanish in the limits t-+®, Let's use a Gaussian form to represent them,

Vi = VEm Y exp - (1t )%/2¢%) . @34
Substitution into Eq. (3.2) yields the transition probability,

Prp = lapp(ts+®) 172 |V, o/h1 2 exp[ Hopp 071 3-3)
A perturbation is sudden if ur.rt«l. and adiabatic if ur.r-r»l. Note that PI“I‘ has its
maximum value when "‘I"I‘T=1'

Another class of problems deals with periodic perturbations, viz.

V(t) = V cos ut , (3.6)



which persist indefinitely. In such cases, one calculates a transition probability per unit
time,

4 2m 5 2
dt Prnr(t) = 52 lv[url 8("‘r|r- ©) . 3.7
An important special case of periodic perturbations is obtained in the limit 020 :V is
independent of time, except for its being turned “"on" and then "off". Here again, one
computes a transition probability per unit time, with the result that [in Eq. (3.7) ] the
delta function é(urr,—u) is replaced by B(orr,).

Finally, suppose that T' is one of several degenerate states, whose density (i.e.,

number of states per unit energy interval), is p(E[-). for instance, a plane wave of
momentmnp = ik = mv has a density of states

_4mp'dp (3.8)
(2wh)*dE

It is intuitively obvious that the transition probability should be proportional to p(E). In
particular, for the constant perturbation we have, altogether,

da 2 2w % 2
v{ur = dt larqr(t)l = f 'v[nr I P(Erl ) . (3-9)
This very important formula is called "Fermi's Golden Rule."

Cross Sections and Detailed Balance

Consider the apparatus shown in the figure below. A fhx N V_ of particles is
incident on a scattering center, or target. A detector is placed a considerable distance
away, and at an angle © with respect to G:,. The differential cross section for the
scattering of incident particles into the detector, plus causing the transition I'»I'* within
the target, is defined as

— # detections/time/solid angle
Inp@v) = N_v, (3.10)

Integration over solid angles dQ yields the total scattering cross section,

Qrrlvy) = JI 1 (B ) 40 . (3.11)



N

Number density N in
incident beam

FIG. 3.1. Idealized scattering experiment.

Suppose we choose to treat a collision as a time-dependent perturbation problem.
Let b be the impact parameter for a particular collision trajectory, i.e., it would be the
distance of closest approach of the target and the incident particle, if their relative
motion were rectilinear. We can use Newtonian equations of motion to compute V(t) and,
with it, a probability P[.,[.(b, vo) for the transition (classically, b and © are uniquely
related). From it we determine the total cross section,

QI"I'(vo) =2n f PI“I‘ (b, vo)bdb . (3.12)

This is the basis of the impact parameter method.
Alternatively, we can choose to treat a collision as an eigenvalue problem; we then
solve

[H(target) + H(projectile) + V - EtotaI] wtotal =0, (3.13)

with V being a function of relative positions, spins, etc., but not a function of time. The
flux in this case is just '\70, and the differential cross section is

dPp,p (1)
Qplvy) = 'vl: [—};5——1 , (3.14)

where dP/dt is gotten from “Fermi's Golden Rule."
In general, there is a degeneracy B+ of the target's final states, in addition to the
degeneracy P(EI") « v,, the speed of the scattered particle. Thus, we have

dm® gp,
20 o Gips 2 | o ¥
Q[.,[.(vo)= % 1<} ViT>| [(Zwﬁ)’v ] . (3.15)
o
where u is the reduced mass.
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Finally, consider the reverse process, wherein the incident particle, with velocity V;
scatters from the target and causes the transition I''+I'. The same arguments that got us
Eq. (3.15) can also be used to obtain the cross section for this back reaction. Because only
the square of the absolute value of VI"I‘ appears in both formulae, we find that

2 2 (3.16)
Vo Br pierlVe) = V¢ 81 Qpep (Vg)

This is the "Principle of Detailed Balance," which will prove to be very useful.
In the remainder of this lecture, we apply these ideas to transitions between bound

states of an ion. Ionization and recombination processes will be treated in the last lecture.

The Radiation Field, Classical and Quantized

The standard classical treatment of the electromagnetic field is in terms of scalar
and vector potentials. When no sources are present, the scalar potential ¢=0, and the
Coulomb gauge is usually chosen: 7 ¢« 2=0. Auseful description of the vector potential
is its Fourier decomposition in three dimensions, with the imposed boundary condition that
X be periodic in & box of dimension L » atomic dimensions. Thus,

2
Art)= ¥ ¢ ¥ {Aiqm[i(i'-?-ut)]+c.c.}, (3.17)

=1 1 2

wy

where ::1 and EZ are unit vectors representing the

different axes of polarization, vw=ck is the angular frequency,
Ris the propagation vector, and c.c. denotes the complex conju— €,
gate of the preceding term. In terms of the wave amplitudes

Ag, 0t A%q , the energy density of the radiation field is

™m?

1
U= 5;_'2 k2| A2 |* (3.18)

k.q

The quantized electromagnetic field requires, for its description, the mumber of
photons Ni qhaving specific polarization and momentum fik. Thus, we write,



| EM field > =|Ni>1c1> |NiD1c2> INi)zc1> e . (3.19)

The simple product representation is possible because each mode (i:’.q) is treated as an
independent harmonic oscillator. When canonical variables are constructed from R and
K'. we can effect the transition to a quantized field by making replacements in Eq. (3.17),

e = P
Agg 250V ) g Ape v '%.q : (3-20)

'Ihemostimportmtpropertiesoftheopmtorsamdafare

aquN-b >=v N IN—» -1,
q |N4q> /N—» + lN—» +1),

ady oy INp ) =Ng INg ) a.21)

Given these properties, it is evident why a, a+ and a*a are called the destruction,
creation, and number operators, respectively.

Interaction of Matter and Radiation*

The interaction is treated as a perturbation, and the correct form of the non-
relativistic Hamiltonian is gotten from Pauli's approximation. For each atomic electron,
there are three terms involving A

vui)=ax.si+-;-¢’x.x+ (VxR . (3.22)

(Atomic units have been used.) The first term represents electric multipole interactions.
The last of these three terms represents magnetic multipole interactions; it is ignorable if
the first term can cause radiative transitions, because the curl operator has the effect of
introducing another factor of a. The middle term, also smaller by a factor of a, contains

*In addition to texts cited in the first lecture, see especially the recent review by
Heffernan and Liboff (1982), JQSRT 27, pp. 55-77.



products of the operators a and a+. It is responsible for Rayleigh (elastic) scattering and

Raman (inelastic) scattering.
Suppose we are interested in a transition in which an atom starts in state I', emits

or absorbs a single photon (i:'.q). and ends in state I'". The only part of the radiation field's
initial wavefunction that is involved is the ket 'qu>' and the transition matrix element

reduces to a single term,

emission . T .
labgorption } » ( Ngq# 1: 'IVINg : D)

N T

q . N oD >
- (Em2yl/2 e (e Bet XD . (3.23
i=1
N

At this point, we invoke Fermi's Golden Rule to compute the transition probability per
unit time. The additional information needed is the mumber of modes, per unit energy
interval, for a photon propagating into the solid angle dQ about X, and in the wave vector

interval(i’.'l'('+dﬂ:

ap(d = ili?ﬂn : (3.24)
(2m)

Of course, k must be such that energy is conserved, i.e., IEI. - EI’" = @ = k/a (in at.
units).

Altogether then,
aw N > > N'ﬁ, +1
I'T a’k - + Filer 2 !
=(52)|(T'] ee ¥ pe iiry] » (3.25)
dQ 2w - W i Nit'.q

In this, our fundamental result, upper values correspond to emission, and lower values to
absorption. Especially important is the stimulated emission factor proportional to Nﬁ.q'
which is responsible for lasing phenomena.

The dipole approximation (i.e., an El transition) is obtained by putting

ﬂ?o;"i

e + 1% ii:’-i-; . (3.26)



Since, for a bound electron, r typically is of the order n’aolz, this simplification is
adequate as long as the photon energy is not too large, Ek = fick < (Z/n*) keV. After Eq.
(3.26), the next step in the dipole approximation involves the operator identity

B =f% [H(ator), )] (3.27)

and the definition of the atomic dipole moment, Bu-e 217; . Then, if we assume that
the radiation field is isotropic and unpolarized, viz

N , (3.28)

we can sum over polarization states and integrate over propagation directions to obtain a
transition probability per unit time

N +1

El emission
rr (3.29)

E1l absorption

Np= N

[~
]- %k' I<rBIT> |2
N
[~)
(In natural units, we replace k* by k*/f = o*/hc®.) Finally, if we use the fact that the
specific energy density of radiation is directly proportional to N namely U =
(ho/m?c®) o (—N ) , we obtain the familiar Einstein coefficients; reverting to natm'a.l

units these are

]
1 BIm)?

Wr,r(spontaneous emission, ' ) = AI"I‘ = The

Yy = . ;4"_2 . 2
Wp.p ( stimulated emission, I+T*) = B p,p, = o u, 1| Biryi?, (3.30)

WI"I' ( absorption, I''-I' ) = B[‘I“ = 3 I(I‘I B irey?

These results are easily extended to include degenerate atomic states I' and/or I'.
Let vy and y' denote, respectively, the substates of [' and I'". Following an earlier
discussion leading to Eq. (3.16), for any of the probabilities AI"I" BI"I" or BI‘I‘" we have
simply '



1 I w_, (3.31)

wI"t-I"g yy Y'Y '

if there is no substate selection. Thus, we obtain BI"I‘ gr = BI‘I" Bp -
Two other quantities often are used in discussions of matter-radiation interaction.

They are

line strength: Spp, = I [(I'y' | Biry)? (3.32)
Y'Yy
Zmem
absorption oscillator strength: fr"r'=3ﬂe’g SI“I‘ . (3.33)
I‘I

Electric Dipole (E1) Selection Rules

Restrictions, or selection rules, for radiative transitions arise from the evaluation
of the dipole matrix element (I'* | vf IT'). Regardless of the coupling scheme used to
describe the atomic states, we find that E1 transitions can only occur if

Al = IJI.-JI.,I =0,1, (3.34)

but (JI. =0) -» (JI., = 0) is not allowed. Additionally, we can ascribe a parity to each
N-electron state

LYy
= (-1t (3.35)

as well as to the field's electric multipoles,

m (3.36)
nEm =(-1) .

Then, conservation of parity can be expressed succinctly as

HI" uEmnI‘ =+1. (3.37)

There are additional selection rules, that we will present shortly, that apply to
particular angular momentum coupling schemes, i.e., LS or jj.



Forbidden Transitions

When a particular transition violates any El selection rule, its dipole line strength
factor Spir = 0 and the transition is termed "forbidden." However, it may not be strictly
forbidden: many transtions can occur via higher order terms in the expansion of exp (ik o
1), Eq. (3.26). These terms correspond to higher multipolés — electric quadrupole, electric
octopole, etc. — of the electric field's interaction with the atom. Each such term brings
another factor of a” into the transition probability formula. Moreover, if a transtion is
dipole-forbidden, we also need to consider the magnetic multipole terms that arise from
the interaction

a ?g’-(?xKH eh
i=1 2mc.-.

N
) Be ¥ 'd'i(natm'al units) . (3.38)
1=l

Since |B| ~(v/c)|&| ~Zal|# |, it is apparent that E2 and M1 transitions have matrix
elements of comparable magnitude; and similarly for E3 and M2 transitions, etc. [The
various magnetic mutipoles also derive from higher order terms in the expansion of
exp(iker).]

The following table summarizes the selection rules that apply to El1 and Ml
transitions; E1 selection rules are also given. Incidentally, the parity of a magnetic
multipole is

(3.39)

Ty = (-2
Z-Scaling of Radiative Transition Rates

To extract Z-scaling properties of the various multipole contributions to the
spontaneous transition rate A(I"'«I'), we need the general results (cf. Blatt and Weisskopf,

Theoretical Nuclear Physics, Ch. 12, 1952)
AEm(r' Ty« AEzm"'l 1,2m ,

(3.40)
2m+1 I.2!!1—2

AMm(I" «[') x AE

Since, as we noted earlier, AE ~ Z* and r ~ Z~*, we have



Mgy ~ 75wt A - 2P (3.41)
This scaling is exact for non-relativistic hydrogen atoms, and is quite accurate for non-
relativistic complex atoms.

Now, typical transition energles are AE ~ (Za)? at. units, so each successively
higher multipole A-value decreases by approximately a factor of a* ~ 10~ °! Recall that
for hydrogen, A, (1s & 2p) ~ 10* sec™l; thus, we can expect M1 and E2 transitions to
have probabilities of order 1 sec” ', M2 and E3 transitions to have probabilities of order
10~ * sec™*, and so on.

TABLE 3.1. Selection Rules for Allowed and Forbidden Transitions.

Coupling scheme
for which the Electric-Dipole Magnetic-Dipole Electric-Quadrupole
rules apply:
1. AJ=0,%1 AJ=0,21 Al=0,21, %2
(0«0 forbidden) (0«0 forbidden) (06e>0; Y, 01,
all forbidden)
[L-S and }-]]
AMJ=0.11 AMJ=0.:tl AMJ-O.tl.tZ
Parity change No parity change No parity change
Al=11 Al =0 A =0, 2
An=0
[L-S only]
AS =0 AS=0 AS =0
AL=0,%1 AL =0 AL=0,+1,+2
(0«0 forbidden) (0e—0, 0«1 forbidden)
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An excellent summary of radiative transtions in the He isoelectronic sequence has
been given by Dalgarno (1971), in a symposium honoring D. Menzel (N.B.S. Special Publ.
#353). Figure 3.2 and Table 3.2 have been extracted from his review. In connection with
the table there are two things to note: (1) the 2’81 - 1150 transition occurs only in a fully
relativistic formulation of M1, wherein the 1s and 2s radial functions are not orthogonal
[cf. Eq. (29)]; (2) the 2°P, - 17s, transition mode is M2; for Z>17, this is faster than
the E1 transition 2°P,, - 2°S,.

The situation is less satisfactory for the Ne-isoelectronic sequence, whose spectrum
is much more complicated and whose wave functions obviously are much harder to

compute accurately. The configurations of the lowest excited states of these ions are
(2s)? (2p)°® [3s or 3p or 3d] and (2s) (2p)~ ® [3s or 3p or 3d) ;

a partial energy level scheme is shown in Fig. 3.3. One interesting aspect of these energy
levels is that the lowest excited state is (2s* 2p°® 3s)® P, which can decay radiatively only
by an M2 transition. As predicted by Eq. (3.41), the M2 transition rate ~Z'°.

2'p, —0-
3
o~ 23P1
E1 > 23P2
M2 E1
E1
E1
2's, Q E1
M1
— 23s
E1 !
(E1)2 E1
M2 M1
(E1)2
1's,

FIG. 3.2. Energy level diagram for neutral helium showing the ordering of the levels.
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TABLE 3.2. Radiative Transition Probabilities A for the Helium Sequence (in sec™1).

Z System 2'p, - 1's* 2’p, -1's, 2’s, -1's,
2 Hel 180 @ 3.27 (-1) 127 (-4
3 Lin 2.56 (10) 3.50 (1) 2.04 (-2)
4 Bell 122 (11) 6.17 (2) 5.62 (-1)
5 BIV 3.72 (11) 5.01 (3) 6.70 (0)
6 CV 8.87 (11) 2.62 (4) 486 (1)
7 NWVI 1.81 (12) 1.03 (S) 2.53 (2)
8 O VI 3.31 (12) 3.34 (5) 1.04 (3)
9 F v 5.58 (12) 9.23 (5) 3.61 (3)
10 Ne IX 8.87 (12) 2.27 (6) 1.09 (4
11 Na X 1.34 (13) 5.10 (6) 2.94 (4)
12 Mg XI 1.96 (13) 1.06 (7) 7.24 (4)
13 Al XII 2.76 (13) 2.09 (7) 1.66 (5)
14 Si X 3.78 (13) 3.88 (7) 3.56 (5)
15 P XIV 5.07 (13) 6.91 (7) 7.25 ()
16 S XV 6.66 (13) 1.18 (8) 1.41 (6)
17 Cl XVI 8.59 (13) 1.96 (8) 2.62 (6)
18 Ar XVII 1.09 (14) 3.14 (8) 471 (6)

* From G.W.F. Drake (unpublished).
+ 1.80 (9)=1.80x 10°

In Table 3.3 we present some Ne-like ion radiative rates, computed with a
Dirac-Fock code by Fielder, Lin, and Ton-That (1979 Phys. Rev. Al9, 741). At Z=10
(Ne®), the lowest J=1 state of the configuration (Py/, 51/7) 15 88% 'Pl. but at Z=92, its

character is 66% 1Pl. Therefore its decay rate to the ground state increases with Z

primarily because of this configuration mixing.
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FIG. 3.3. The first 36 excited states of Ne-like krypton in JJ coupling.
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TABLE 3.3. Some Neon-like Ion A-Values.

A(2p°eT) (sec™ )

lon T=(P3/3- £1/2)1, 1ower [ =(p3/5:81/2)2
Ne*® 322 (O 7.6  (-2)
Ar** 4.64 (10) 2.89 (3)
Cu**® 1.16 (12) 5.13 (5)
Ho*®’ 9.86 (13) 1.55 (9)
ute? 7.42 (14) 3.23 (10)

*3,22(7)=3.22x 10’

Inelastic Collisions at High Energy: Born's Method

At high collision energies it is easy to get approximate scattering cross sections
from Born's formula. If the colliding particles interact via a potential V whose range is R,
then "high energy" means

fiv_ » RV, or (v /c) » (Za) . (3.42)

The second exprrssion is for a Coulomb interaction between an incident electron and an
ion. If we recall that bound electrons have speeds v ~ Zac, then it is apparent that the
Born approximation essentially requires VPV (bound e ), for electron-ion scattering.

To obtain the Born cross section formula, we begin with Fermi's Golden Role, and
note that the density of final states for the scattered particles is given by Eq. (3.8). Thus
Eq. (3.15) is applicable. However the state |T') in that expression represents not only the
target ion, but also must include the scattered particle. Born argued that if the velocity
is high - or, equivalently, if the interaction is weak — then both the incident and final
states of the scattered particle can be approximated as plane waves. Thus,

3—14
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o 2

| target + incident particle ) = el X0T |T) ,
(3.43)

iaa
| target + scattered particle ) =e ker i) ,

where hk = uv for colliding particles having reduced mass u. We now specialize to the
case of ¢ -lon scattering, for which

N
Z 1
V(r) = ="" + Z .

B S L
When the product functions of Eq. (2.43) are used, one obtains, after some calculation, an
interaction matrix element

(3.44)

[ -]
an faror? [B2KG (p vy
0

where K = fr('l':'f - i‘:’o) is the momentum transferred in the collision. With the interaction
(3.44), the total Born cross section becomes, using Eq. (3.15),

(k, +kp) N g
Tpp (ko) =1—’:-‘21f(k :.—Kl(r'l v BT |y (3.46)
° JH) 1
Only for hydrogenic wave functions can the matrix element involving the bound electrons
be evaluated exactly [see, e.g., M. Inokuti, Rev. Mod. Phys. 43, 297 (1971) }.
Bethe derived a useful, simplified version of Eq. (3.46). He observed that the Born
approximation implies

>
ko-kf...O . andk°+kr»0 .

But, when K is large, the exponential oscillates and there is little contribution to the
integral; when K is small the exponential can be expanded. If only the first term is kept,
one obtains a dipole formula:

.
Qup (k) =3—:al|(r-; Bim® 1 aE (3.47)

o 0
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where the upper limit of momentum transfer is ill-defined, except that we require K(r j)
< 1. Now, the square of the dipole matrix element is just the line strength factor S
introduced in Eq. (3.32). Therefore, the cross section can be written in a form where it is

proportional to the absorption oscillator strength:

2w f 2KE

r'T o
%ur B = Ear (e ) - (3.48)

This is the Bethe-Born formula, expressed in terms of the incident energy Eo' and the
excitation energy AE. In this equaton, all quantities are in atomic units, so the units of Q

are a; =281x10 *7 cm?®.

Although this formula was obtained under the assumption that Eo » AE, it is quite
similar to an expression derived by Seaton [Atomic and Molecular Processes, ed. Bates
(1962) ] for low-energy electron-ion collisions, namely

2w f o,
Qr B = FTh— [= 6%, (3.49)

EoAE v3
where G*, a quantity of order unity, is called an effective Gaunt factor. G*-values for
several transitions (e.g., configuration-configuration) were determined by Blaha
[Astrophys. J. 157, 473 (1969) ], whose results are reproduced in Table 3.4.

That these two formulae are in reasonably good agreement with each other is
somewhat surprising not only because of the different energy regimes for which they
supposedly are valid, but also because of the fact that plane waves were used to derived
the Bethe-Born formulae while Coulomb waves*® were incorporated into Seaton's analysis.

Generally speaking these simple formulae can be used as a first guess — or a last
resort. Better cross section values require more elaborate descriptions of the collision.

Inelastic Collisions at Low Energy: Coupled-Channels Methods

When the relative kinetic energy of the scattering particles is low, we expect
atomic wave functions to be significantly perturbed during the collision. Thus, it is
unlikely that a single product of (unperturbed) states — as assumed in Eq. (3.43) for Born's
approximation - gives an accurate description. However, the wavefunction of the
complete system of target ion plus scattered particle can always be expanded in terms of
an infinite sum of product states,

*Coulomb waves are the positive energy solutions of the hydrogenic Schridinger equation
(2.1).
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TABLE 3.4. Effective Gaunt factors G* for Threshold Excitation of Positive Ions.

Z/ko
Transitions 2 3 4 5 6 8 10 12 14 16
1s*2s-15?2p s2ot 660 752 822 8717 960
2s®-2s2p 640 708 771 830 876
2s*2p-2s2p? 690 753 808 856 898
2s*2p*-2s2p® 710 774 821 863
2s*2p®-2s2p* 723 776 824
2s*2p*-2s2p°® 711 765 816
25%2p°-252p° 703 762 809
2s%35-25%3p 373 485 580 650 756 836 893 936
2p°®3s-2p°3p 525 600 657 707 786 84S
3s*-3s3p 587 633 676 717 787
3s*3p-3s3p” 642 680 714 748 810
3s*3p*-3s3p° 655 690 725 757 818
3s*3p®-3s3p* 665 700 735 765 828
3s*3p“-3s3p°® 668 702 740 774 830
3s*3p°-3s3p°® 674 706 740 772
2s*3p-25*3d 320 450 552 640 764 853 904 954 974
2p®3p-2p°®3d 446 544 617 6771 778
2p®3s3p-2p°3s3d 562 613 662 708 792
3s%3p-3s3d 524 593 651
2p®3p-2p°®4s 403
2p®3d-2p°4p 440
35%4s-3s°4p 314 403 464
35?3d-3s%4p 478

TThree flgures behind the decimal point are given, e.g. 520 = 0.520.
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e >
v (r. rj) = §"¢rn (rj)%n(;’) . (3-50)

If the interaction V is weak, then only a few terms may actually be important. Of course,
if the scattered particle, whose wave function is ¢. is an electron, this equation must be
modified to include exchange antisymmetry, i.e., each term becomes a Slater
determinant. For the general arguments presented in this section, though, we can

temporarily ignore this complication.
In Eq. (3.50), the states °I‘ represent eigenfunctions of the undisturbed target, and

the ¢[. represent the state of the (structureless) incident particle. Conventionally, each
product state is called a scattering channel. Some straightforward mathematical
manipulations (c.f. Mott and Massey, Ch. XIV) permit us to cast the time independent
Schridinger equation into the form

(97 k) oplr) = L, &l D) Upup (), (3.5)
where the UI"‘I‘ are the so—called coupling matrix elements of the interaction,

2L om (2 <> > -
Upwp () = i (F) MEFP I TEDD (3.52)

and where E = Ep + ﬁ’kr’.lzu is the (constant) total energy. Formally, the scattering
cross section for the transition ' =» I is gotten by matching the asymptotic form of ép to

r -
op D ~ ¢ ot frp (). (3.53)
r-o

Then, it can be shown that the differential scattering cross section, Eq. (3.10), is simply

. K e
tpp =30 M pp @ (3.54)

The quantity f rr is the scattering amplitude. (It is unrelated to the oscillator strength
introduced earlier.)

This is all straightforward, and no approximations have been introduced. The hitch
(there always is a hitch) is that Eq. (3.51) represents an infinite set of coupled, second~
order, inhomogeneous differential equations. In order of increasing severity, the
approximations and simplifications commonly employed are:
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Multi-state close coupling: retain just a few (~10) equations, including those for the
initial and final states ¢I‘ and ¢I" and those for states with large matrix elements
UI"'I‘ and/or UI"'I‘" Ignore all other matrix elements.

Two-state close coupling: retain just the four matrix elements (U
involving the initial and final states I' and I'"'.

rr Vrr Yrer VUrep?

distorted-wave: make the two-state close coupling approximation. Then, assume that
IUI"I’ |«|UI.I. |, so that the initial state wavefunction approximately satisfies the
homogeneous equation

[V? + %) - Upplép () = 0. ' (3.55)

Then, use this ¢I‘ to solve the inhomogeneous equation

[V + & - Uppdép () = ép Unp, (3.56)

for¢r,. and obtain the cross section I'>I'' from Egs. (3.53) and (3.54). We can ultimately
reduce the coupled-channel calculation to a Born-like calculation, which amounts to
solving the single equation

il-;'o ot

V? + Kflop () = e Uepr - (3.57)

In fact, the Born formula discussed previously is a first-order approximation of the true
solution of Eq. (3.57); consequently, collision physicists refer to it as the "first" Born

approximation.
Collision Str and Their es

Upon allowing for target state degeneracies, the e -ion cross sections of Egs. (3.47)
- (3.49) all exhibit the form

1

2
gI'ko

O =
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It turns out to be convenient to use this fact, and thereby to define a quantity Q called the
collision strength;

Qo = k’“ Qr.n , (3.58)
05T

which is dimensionless, and is symmetrical in its arguments, i.e., (T",I') = O('.I"). If the
logarithmic behavior of the Bethe-Born formula is to be believed, then the collision
strength is only weskly dependent on the emergy E, = 7k’. In fact, since their
introduction some 40 years ago, many physicists have steadfastly held this opinion. Only
within the past few years has it become commonly accepted that collision strengths can
have a significant energy dependence. For the L-S coupling scheme, one has [see R.
Henry, Physics Reports 58, 1 (1981) ]

QAL =1, AS =0) ~ !n(EolAE) (3.59a)
(AL # 1, AS = 0) ~ constant (3.59b)
(3.59¢)

Q(AS # 0) ~ (AE/EO)’

A comparable set of rules does not exist for jj coupling. However, the energy
dependence of any particular collision strength can be found via a recoupling: each jj state
corresponds to an admixture of LS states

I(3,35) 5} = L (coupling coefficients) | LSI ) , (3.60)
LS

and so one has, conceptually,

Quj) = } (re—coupling coefficients for I') (re-coupling coefficients for I'") Q(LS)
LS
(3.61)

Documented computer programs exist to carry out this task.

Some Z-scaling properties of collision strengths are quite simple. In the absence of
angular momentum recoupling effects (i.e., in strict LS coupling), and at an energy well
above threshold one has

Z?Q = constant. (3.62)
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As an example of how the breakdown of LS coupling affects Q-values, we consider
the simple He-like case 1s? - (1s2p) 'Pl . At low Z the collision strength has the form
(3.59¢), but as Z increases the spin orbit interaction mixes singlet and triplet states, so
the logarithmic form (3.59a) also contributes; this behavior is evident in Fig. 3.4, where
scaled collition strengths are plotted versus Z for different values of the energy
parameter x=E°/AE. As an example of the scaling behavior (3.62), in Fig. 3.5 we show
collision strengths for the Na-like ion transition 3s - 3p. No mixing effects are present
for this case. It is apparent that Eq. (3.62) is valid only at collision energies satisfying x >
10.

Some general references for Q-values are:

1. the review by R.J.W. Henry, cited above (1981).

2. a LASL Informal Report #LA-8267-MS (1980).

3. a continuing series of papers by D. Sampson and collaborators, usually in

Astrophys. J. (1976 — present).
For Ne-isoelectronic sequences (Z $ 50), one can consult recent work by K. Reed

and A. Hazi (Phys. Rev., and unpublished LLNL reports).
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FIG. 3.4. Intermediate coupling effects in Sampson's data for the Helium sequence.
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FIG. 3.5. Collision strengths of J. B. Mann for the sodium sequence, normalized to the
Mo-values (from 1980 LASL report #LA-8267-MS).

Comments on Relativistic Effects in Collislons

Relativity can alter scattering cross sections in a variety of ways:
(1) modification of target wavefunctions;
(2) use of Dirac, instead of Coulomb, waves to represent incident e;
(3) kinematic effects (e.g., ik = Ym v, with vy 2al1-v?c?).
For a recent discussion of these topics, the interested reader should consult B. L.
Moiseinvitsch, Adv. Atomic & Molecular Physics 16 (1980). For plasmas in which the
ionization state has been achieved primarily through photoionization — as opposed to
thermal, collisional ionization - the third item is less important than the first two, since
mean thermal electron energics will be somewhat less than the atomic ionization
energies, viz. (KI/m ) < (Zac)®.

As an illustration of the magnitude of items 1 and 2, Table 3.5 compares some
Z-scaled collision strengths for hydrogenic ions. Those labeled CB were computed in a
(Coulomb) Born approximation, while those labeled RCB were computed in a Born
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approximation, but using Dirac bound and free orbitals. Spin-orbit effects were included
in the electron-electron interaction, but retardation effects (e.g., Breit interaction) were
not. These are the only results, of which I am aware, for relativistic e -ion collision
strengths.

As a last point, we note that Jones [Phil. Trans. Royal Soc. (London), A277, 587
(1975)] showed that, to order (Za)?, the Breit interaction does not affect term LS values,
Q(LS, L'S'), but of course does modify values for transitions to and from specific

fine-structure levels, Q(LSJ, L'S'J").

TABLE. 3.5. Values of Z2Q for Hydrogenic lons2.

Z2Q(1s, 2s) Z2Q(1s, 2p)
yA cBb RCBC CBb RCBC¢
2 0.797 0.792 3.37 3.39
25 0.88 0.93 4.06 4.04
50 0.88 1.15 4.09 4.06
100 0.88 2.75 4.10 3.41

a All calculations are for £1/|E1| = 1 where §; is the energy of the colliding electron
when the target is in the ground state; E; is the energy of the ground state.

b CB Results of A. Burgess, et al. (1970), Phil. Trans. Roy. Soc. 266, 225.

¢ RCB Results of R. W. Walker (1974), J. Phys. B. 7, 97.
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LECTURE #4 — IONIZATION BALANCE; SPECTRAL LINE SHAPES

Until now, we have only treated transitions between states of the same ionic
specie. In this lecture, we extend the discussions of collisional and radiative transitions to
include ionization and recombination processes. Then, we will briefly describe various
ionization equilibria. Finally, we will sketch some basic ideas on the subject of spectral
line shapes. In contrast to the first two lectures, we will use natural units most of the

time.
Photoionization

Whenever an atom absorbs a photon of energy fiw greater than the binding energy of
one of its electrons, the process of photoionization occurs,

fo + atom(T) »e +ion(l") .

The cross section for this process can be determined from Fermi's Golden Rule, but to do
so we must assemble several bits of information:

Photon flux = ULc—(L)z 1N (4.1)
T he ‘we 20 :

Energy of ejected electron = € = %me v? = fo - (EI‘ - EI") . (4.2)

Orbital of ejected electron = ¢_, (1) = A" ll,pe (DY@ . (4.3)

IP'E 2 ) = 6(e'-€), Eq. (4.3) represents an outgoing flux

. s 1 1
With the normalization (rpe'!.'r

of one electron.
Upon combining these results in the formula for the absorption probability per unit
time, Eq. (3.29), we get the photoabsorption cross section (I'-I'")

2
opup(@) = 222 (B> | . (4.4)

[Often, the factor h arising from Eq. (4.3) is extracted and used to cancel the factor h~*
in Eq. (4.4). And, since the final state is fixed by the photon energy, it sometimes suffices



to denote just the initial state.] This is an El1 transition formula, and so the selection
rules given in the Table 3.1 apply.

Even for hydrogenic systems, the evaluation of bound-free matrix elements
(e'?'|r|nl) is non-trivial. Analytic formulae have been published only for atomic states
- with n2<4p. Detailed discussions can be found in: H. Hall (1936) Rev. Mod. Phys. 8, 358;
J. M. Harriman (1956), Phys. Rev. 101, 592; and A. Burgess (1964), Mem. Royal Astron.
Soc. 69, 1. Some hydrogenic results of Burgess are shown in Fig. 4.1. In particular, the
difference in the 2s and 2p cross sections should be noted: this difference is at the heart
of a laboratory soft x-ray laser scheme proposed by P. Hagelstein (cf. his Ph.D. thesis,
Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53100).

For most purposes, it is sufficient to use semi-classical formulae derived by
Kramers, which have no dependence on orbital quantum number 2:

3 3
O(K)(u) _ 64w ‘;“ “n _19x10""%n “n om? (4.5)
n 3‘/:;' zz (7] Zz (2]

| l_l_[l]Tr LR lTTllr L L BLL LA A
10-17 -
F 2s 3
1s
N - ]
g - -
s [ 7
10719 =
10..20 1 FSEm| r Yool L 1 )1}
2 10 100 1000
hw (eV)

FIG. 4.1. Cross section for H(n%) + ho-*H* + e (based on the matrix elements tabulated by
A. Burgess).
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In this formula, o = (Z*/n*) Ryd. is the electron's binding energy. Corrections to the
Kramers formula are usually given in terms of a "Gaunt factor" Gn!("’)' such that

oo @ =00 Y0) G (@) . (4.6)
Table 4.1 lists threshold values, Gn!("’n)' and frequency-averaged values.

Photoionization cross sections for complex systems (more than one bound electron)
invariably are computed using central field wave functions. Two useful compilations of
theoretical results for Z <30 are: W. D. Barfield, G. D. Koontz and W. F. Huebner (1972),
J. Quant. Spectrosc. Radiative Transf. 12, 1409; and R. F. Reilman and S. T. Manson
(1979), Astrophys. J. Suppl. 40, 815. The first of these gives fitting coefficients for
polynomial expressions computed using Dirac-Slater wavefunctions. The second tabulates
o-values computed using Hartree— Slater wavefunctions. Typically, the accuracy of such
calculations is judged to be better than 20%.

As a last comment on the subject of dipole (E1l) photoionization, it is worth
mentioning a parametric form introduced into the astrophysical literature by Seaton in
the 1960's:

o) = ofog) [ /ey + @)™ (1-8)] . “n

TABLE 4.1. Gaunt factors for hydrogen atom.

Orbital G at absorption edge G for whole continuum
1s 0.80 0.84
28 0.96 1.20
2p 0.88 } 0.89 0.83 } 0.94
3s 1.14 1.6
3p 1.14 0.92 1.31 0.99
3d 0.73 0.64
4s 1.3 1.95
4p 1.3 } 0.94 1.74 Lol
44 1.18 :
4f 0.43

S 0.95 1.02
6 0.96 1.02
7 0.97 1.02




with fwo being the ionization threshold. It is more flexible than Kramer's formula and
actually fits light ion cross sections fairly well near threshold. Also, it is very convenient
for computations.

Relativistic effects in atomic photoionization are of two kinds. One arises from the
use of relativistic bound and free electron wavefunctions, and is a fairly straightforward
generalization of formulae presented here. The other occurs when the photon energy is
very large, say ‘hu_>_mec’. and then the dipole approximation is no longer valid. These
issues are discussed at length in Hall's paper, and also are treated in Bethe and Salpeter.
The report UCRL-51326 (J. H. Scofield, 1973) tabulates relativistic neutral atom cross
sections for the entire periodic table for 1-1500 keV photons.

The rate (ionizations/atom/time) at which photoionization occurs in the presence of
a radiation field having a specific energy density Um (energy/volume/angular frequency
interval) is just

@ dr (0)

FI'=G£ U, e

(]

do . (4.8)

As an example, we can compute the ionization rate for a hydrogenic atom in a black-body
radiation field, using Kramer's formula. The result is

KRAMERS Fn =

3w n® 1

8a* z*\ ¢ -1,
s a[,((——) J %m(ﬁ“’ MepTraq) - 117" 4.9)

here, the mnumerical coefficlent { } has the value 7.98 x 10°/sec, and T,,4 I8 the
radiation temperature. More often than not, Uu is not thermal, and so one usually deals
directly with cross sections.

Radiative Recombination
This is the inverse of photoionization; thus, we can use the principle of detailed
balance to relate the cross sections for these two processes. We use Eq. (3.16), but

expressed in terms of photon and electron momenta, hk and fg = m.yv, to write the
recombination cross section (I''-I') as

arrn (q) = kzgr drnr (k) / ngr' . (4'10)




Note that we have to specify the state I'' of the recombining ion.

There is no need to dwell on this formula, as all of our discussion of photoionization
cross sections applies here too. However, in contrast to the comment about photo-
jonization rates, more often than not plasma species {"x"} have speed distributions D x(v)
that are thermal. Therefore, it is thermal recombination rate coefficients,

([f';?) (T,) = (app, (V) ov)

= (J)' De(v) app V)vdav (4.11)

that one usually requires. At plasma temperatures kBT < a few tens of kilovolts,
relativistic effects are negligible and one has Maxwell-Boltzmann distributions,*

D (v) = 41rv2(mk/21rkBTx)'/ ? exp(-m v*/2K;T,) . (4.12)

Suppose we adopt the Kramers formula for photoionization. Then, using Egs. (4.10)
- (4.12), we get for the radiative recombination rate coefficient (ion - n)

64Za'a’c v/ ha \1/2 f
(rad) (o] “%h “h
KRAMERS BT ) = ———— (—&- ,
. ¢ 3/73 &on <B °> ( T)

f
=5.21x10'“(?§> ( .:.*‘) (ﬁ;.h>cm'/sec. (4.13)
e

where £(x) = xexE:l(x) involves the first exponential integral function; when x»1, £(x)-1.
The Z-scaling properties of this formula are readily determined. The binding energy
hanc:Z’. so we have

a2 Dz1 - 2821, 1/2%) (4.14)

Most plasma modelling calculations make the approximation that excited-state
recombination rate coefficients are given by Eq. (4.14); only for the ground state is a
more accurate photoionization cross section used. The astrophysical literature contains
primarily coefficients that have been summed over all states of the recombined ion. For

*Some aspects of relativistic reaction rates have been discussed by T. A. Weaver (1976),
Phys. Rev. A 13, 1563.
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light ions, Z<26, two papers are especially recommended: C. B. Tarter (1971), Astrophys.
J. 168, 313; (1973), ibid 187, 607); and S. M. V. Aldrovandi and D. Pequignot (1973),
Astron. and Astrophys. 25, 137.

General trends for hydrogenic ions are illustrated in the accompanying Tables 4.2
and 4.3. In particular, one should note that individual Bnn—values. gotten from true
hydrogenic cross sections, are not proportional to (22+1).

Thermal Photoionization Equilibrium

Let's apply these results to the simple problem of a plasma in which matter and
radiation have the same temperature, i.e., the plasma is in thermal equilibriutn. Because
of the equilibrium conditions, we know that every reaction is balanced exactly by its
inverse. For the photolonization problem we have, then,

(rad) _ (4.15)

NeNionB 't

TABLE 4.2. Summed recombination rate coefficlents for H-like ions, in units 1012 cm?
sec™,

T
1250°K 2500°K S5000°K 10,000°K 20,000°K
[ ]
a,= % @ 17.4 11.0 6.82. 4.18 2.51
[
ag = g a4 12.8 7.72 4.54 2.60 1.43
[
a.= § @ 10.3 35.99 3.37 1.83 0.950
[ -]
Apy= E o, 8.65 4.86 2.64 1.37 0.683




TABLE 4.3. Radiative recombination rate coefficients, at T=10,000K, for H*+e-H(n,2) +
fo, in units 10~1€ cm3sec™! [obtained from functions tabulated by Burgess (48)].

!\9. =0 1 2 3 4 S 6 7 8 9 10 11

1582

234 536

78.2 204 173

36.3 96.5 109 355.5

199 528 669 494 17.9

122 316 429 375 205 5.85

794 20.3 28.8 28.2 18.7 8.22 2.00

5.48 13.7 20.0 209 15.8 859 3.25 0.706

394 9.73 144 15.6 128 797 3.75 1.28 0.259

293 7.09 10.6 12.0 105 7.12 3.83 1.61 0.502 0.100
223 35.34 794 9.15 845 6.20 3.67 1.77 0.688 0.203 0.039
1.74 3.99 6.08 7.22 6.85 5.38 3.41 1.83 0.825 0.304 0.084 0.016

NhbvoNaLAWNE

But in equilibrium, there also is the Saha equation,

372
N_N 2 m T -
e ion 8on ekB T
—_— = | = _— exp | —— . 4.16
Np <5r> (mm’ ) (“BT> 19

that relates the density of ionized atoms to that of atoms in a state with ionization
potention II" If we use the Saha expression to eliminate the densities from Eq. (4.15), we
cbtain the result that the ratio /8% > equals the right hand side of Eq. (4.16).

After putting g = 2n?, we can check this against the expression we get by using
Kramers hydrogenic cross section formula. The do not agree! The discrepancy can be
traced, not to our choice of an approximate cross section (detailed balancing holds, no
matter how stupid we are), but to the fact that radiative recombination is a photoemission
process — in addition to the spontaneous rate (4.11), there is a term corresponding to
stimulated recombination that is proportional to the radiation energy density Uu. We find
that the cross section for recombination, Eq. (4.10), must be multiplied by the factor

2 3
1+1NQ=1+"° U

2 o3 A (4.17)

which for a black-body field 'is just [1-exp(—ﬁm/kBT)]_ . Most of the time, this correction
- which invariably is not included in tabulated recombination rate coefficients - is small



and can be neglected; but, clearly, one can think of instances where the correction will be
important.

Electron Impact Ionization

We now turn our attention to the process of collisional ionization,

ion(Z.T) + ¢ (energy = €) »ion(Z+1, I'' ) + 2¢ ,

which was first treated by Thomson in 1912. He used an impact parameter formulation
[cf. Eq. (3.12)], and set the ionization probability equal to 1 or 0 according to whether the
maximum energy transferrable to a stationary electron,

Ae=e/[1+b* €*], (4.18)
is greater than or less than the electron's binding energy. (In this equation, all quantities
are in atomic units.) This prescription yields an ionization cross section (at. units)

i II‘
THOMSON Q1™e) - e 0-76) - (4.19)
In the 1960's this classical scheme was extended by Gryzinski, by Stabler, and by Garcia
to include the effects of the bound electron's motion. Whereas Thomson's formula is
seldom very accurate, Gryzinski-type formulae are fairly accurate at high energies.

It should come as no great surprise that the Born approximation also is accurate at
high energies. This is confirmed for hydrogen in Fig. 4.2. Even better is the so—called
Glauber approximation, which is another high-energy formula. On the other hand, Bethe's
version of the Born approximation, which also has a ( ne)/e behavior, is poor except at
very high energies, e>1 keV.

Glauber-type calculations have not been carried out for complex ions, and so some
reasonably accurate general formula is needed for low-energy collisons. The most often
used formula is due to Lotz (1967, Astrophys. J. Suppl. 14, 207). Writing I for 1 Rydberg
(=13.606 eV), his cross section expression is

L, I
LOTZ QF™(e) = 24x 1072 () (-H) tn (%) onf . (4.20)
r r
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FIG. 4.2. Cross section for ionization. e + H(ls) » e + Ht + e. [Figure from I.P.P. Nagoya
University Report #IPPJ-DT-48 (1978). ]

This simple formula gives amazingly good agreement with a large set of data, typically
being accurate to within a fraction of two at all energies.

Within the last few years, more extensive ionization data have become available,
and requirements for cross section accuracy have stiffened. Crandall and collaborators
(ORNL) have carefully measured the ionization cross sections for ground-state Li-like
ions C*°, N** and O*®. Their C** data are compared with several formulae in Fig. 4.3.
Among the theoretical advances, the work of Yonager (NBS and now LLNL) is particularly
noteworthy. He has performed an extensive series of ionization calculations within the
distorted wave approximation. His results should be the best available for highly-charged
fons.

A brief status report of this field is given by: S. M. Younger (1982), Comments
Atom. & Molec. Phys. 11, 193. Data for Ne-like ions was published in: S. M. Younger
(1981), Phys. Rev. A23, 1130.

Thermal rate coefficients for collisional ionization can be computed straightfor-
wardly, once one has the cross section. For the simple Lotz formula we obtain
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FIG. 4.3. Cross sections for electron-impact ionization of C3+ as a function of electron
energy. Crandall, et al., @; result inferred from rate measurement by Kunze, O; result of
Donets, ®; semiempirical estimate due to Lotz, O0; ECIP value by Barfield, A; classical
theory of Salop, solid curve; Coulomb-Born calculation of Moores, dotted curve; scaled
Coulomb-Born value according to Golden and Sampson, dashed curve; modified Bethe
approximation of Hahn, dot-dashed curve. Error bars are 2 standard deviations on
counting statistics except heavy bar at 187 eV is absolute total uncertainty estimated at
good confidence. [Figure taken from Crandall et al., 1978, Phys. Rev. A18, 1911.]

LOTZ c(['%“‘)('r o) = (LOTZ Q(I.i“)(v) ev)

I 172
- 6.0x107 (2 —5*.1.—- E, —I—F.l.—- cm Ysec . (4.21)
T k'B e kB e
Hydrogenic levels have ionization potentials II.--Z’ , so the scaling of clon) gien z 1s
(4.22)

clion) 7 7y _ 72 cliom) 3 /22,
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Three— Recombination

Being the inverse of electron-collisional ionization, this process has a cross section
QB that is related to QU™ through detailed balancing. However, of more practical
interest the rate coefficient,

cP® - (B wev) . (4.23)

If we again restrict ourselves to thermal velocity distributions, the quantity C(I?B)(T e)
can be related to the thermal ionization rate coefficient through the Saha equation since,
in equilibrium, one has

(3B) ion) (4.24)
Ng Nign CRoXTg = NN SR Ty -

jon” T

For Lotz's ionization cross section it follows that

Lotz co(T) - z0x107"* (:;) (k;'.} )3/2(11:)2 z (k;}; )cm‘/sec . (4.25)
e (-]

where £ is defined in the text following Eq. (4.13). In this case the Z-scaling is

C(3B)(Z.T) -z C(38) (1.1/2%) (4.26)
Also, note that CSB)--n‘. so three-body recombination becomes increasingly more
important for higher levels n.

Autoionization

In order to understand the remaining ionization balance processes, we need to
describe autoionization. A good example is provided by the Li-ion sequence.

Ordinarily, atomic spectra arise from ions in which only a valence electron is
excited above the ground state. But, suppose that an inner electron were excited; for
Li-like ions, the lowest such states arise from the configurations (1s222%'). As iilustrated
in Fig. 4.4, these levels lie far above the ground state of ionized lithium, and therefore
are degenerate with states of the (Li* + ¢7) system. Quantum mechanics tells us that a
time-independent perturbation V, with a non-zero matrix element (1s222%'|V|1s?,e2"),
can cause a transition between such degenerate states at a rate given by Fermi's Golden
Rule, Eq. (3.9). But, only an interaction involving two electrons can cause such a
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FIG. 4.4. Partial energy level diagram for states of Li and Li+,

transition, because the initial and final states differ by two orbitals. Thus, the atom
"auto-ionizes", with a probability

w® _ 20 | (ton+e| ¥ ryy" linner—shell hole ) | p(e) (4.27)
1#}

When relativistic effects are important (e.g., high-Z systems), one must replace Urij by
the Breit operator, Eq. (2.51).

The Auger effect relates to the same physical process, namely a radiationless
re-arrangement involving the sjection of one {or more) bound electrons. However, that
terminology usually is applied to the sequence of events that occurs after an inner—shell
electron has been ionized. Therefore, analogous to the Li-atom example, above, would be
the reaction sequence

Be(1s*252) + fiw = Be'(1s25%) + e (photo)

Ly Be*™* (157) + e (Augen
4—12



In particular, note that the photoelectron has an energy related to fo, but that the Auger
electron has an energy equal to the difference of the Be* and Be*" states.

In many-electron systems, several electrons may be ejected as the atom relaxes;
this is shown in Fig. 4.5 for noble gases. Formulae for specific cases, and a wealth of
experimental data can be found in: Bambynek, et al., (1972), Rev. Mod. Phys. 44, 716; and
Chattariji (1976), "Theory of Auger Transitions.".

Shell

K L Lo, m M Mim Mwv,v Atom
|

0.8

He

04

0 Ly
2.3 X 1
0.8
Ne
04
i
0

[1}
[ L]
5 ) %3 23 2 12
T 0.8
- |
2 Ar
.g 04
-
3 0 -
e« i 24
Kr
&
Xe
5 5 9 132 °
Charge

FIG. 4.5. The relative abundances of ions that are formed as the consequence of a sudden
vacancy in the K, L, and M shells of the rare gases. The average charge is given for each
spectrum in the upper right-hand corner. The bars containing a notch on top represent an
upper limit to the designated intensity. [Figure from Carlson et al. (1966), Phys. Rev.
151, 41.]
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Numerical values for probabilities of autoionization typically range from 10*?
sec” * to 10*“ sec™ ', and for a given transition the scaling with nuclear charge is weak,

widdz) ~ 25w @),  o<s<1s2 . (4.28)
Because these transition probabilities are so large, it is very seldom that other processes

(collisional or radiative) can interfere with the internal re-arrangement of an atom that
finds itself with an inner-shell vacancy.

Collisional Excitation-Autoionization

It is now easy to understand that excitation of an imner electron can lead to auto-
ionization. Until recently, though, it was throught that such a process is unlikely, and so
it was not included in calculations of collisional ionization rates. Within the last few
years, experiments at ORNL and JILA have shown this expectation to be wrong:
inner-shell excitation, followed by autoionization can increase the total ionization rate by
as much as a factor of 10! Figures 4.6 and 4.7 reproduce some of these data. Information
available now suggests that excitation-autoionization becomes increasingly more
important as one goes to higher charge states. However, there is too little known at
present to even propose Z-scaling behavior.

In principle, there is an inverse to the process of excitation-autoionization: resonant
capture followed by de-excitation. This sequence is discussed next.

Resonant Capture

This is the inverse of autoionization, and for the simple example of a Li-like atom
one would have

e +Li'(1s”) » Li(1s 2pn2) , n> 2 .

No radiation is emitted this capture process which, according to the energy level scheme
in Fig. 4.4 requires a free electron with only slightly less energy than the Li*(1s-+2p)
excitation energy. In order to obtain a thermal rate coefficient, it is most convenient to
use a thermal balance relation,

v\ (rES) a)
NN (241, T CFe rsx(z,rd)w(r,[.d , (4.29)
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FIG. 4.6. Experimental results for electron impact ionization of Ti*3, Zr+3 and Hf +2,
Error bars are one standard deviation of the mean statistical uncertainty. The dashed line
is from the semiempirical formula of Lotz. [Figure from Falk et at. (1981), Phys. Rev.
Lett. 47, 494.]

plus the Saha equation. Together they yield the general expression

gz, T,) 2
G T = 25, T (r_r%:kﬁBTe) "{Sa% exp ( -?E) : (4.30)
where AE>0 is the energy of the state T d with respect to that of I'' . To a good
approximation, one can replace AE by excitation energy corresponding to the transition
undergone by the initially-bound electron, e.g., in the example above, AE = E(Li*,1s2p) -
E(Li",1s%). It is particularly important to realize that, in general, T d is a doubly—excited
state of the ion "Z".
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FIG. 4.7. Cross section for electron impact ionization of N4+. The connected full circles
are data of Crandall et al., (1979), J. Phys. B12, L249; open circles are data of Donets and
Ovsyannikov; broken curve is scaled Coulomb-Born of Golden and Sampson; full bold curve
is Coulomb-Born by Moores. [Figure from Crandall et al. (1979).]

Dielectronic Recombination

Although resonant capture does constitute an electron-ion recombination, the
autoionization of the newly-formed system usually is so rapid that the net effect is that
nothing has happened. But, there is a small chance that the doubly-excited state will
stabilize via a radiative or collisional decay before autoionization occurs. When this
happens, "dielectronic" recombination has taken place. Only at very high densities would
collisional stabilizations be important, and we will not consider their effects here.* We
note, however, that collisional stabilizations do represent the inverse of
excitation-autionization.

* For a discussion of dielectronic recombination at high densities, see Weisheit (1975), J.
Phys.. B8, 2556.
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In the simplest possible case, there is only one radiative decay "channel", say T' a>Ty
and only one autoionization “"channel,” T d—»[". The probability of decay is just the
branching ratio

A /E\ +W(a,) ] ’
['1I'd rlrd I'I'd

and so the rate coefficient for dielectronic recombination via the sequence I''->T d*rl is

(diel) (res)
8 , =C v A A
I'II'dI‘ I‘dI' I'llf‘d I‘1I'd

Thus, the recombined ion is stabilized in the excited state 1"1.
Again, using the Li-ion to provide a concrete example, one dielectronic sequence is

w® 7. (4.31
T Iy ] )

Litas®) + e -> Li(1s2pnd) - Li(1s*n) + ho
I e I b Y e
r r a I‘l

Incidentally, the stabilizing radiative transition I d"rl' which takes place in the ion (Z)
and in the presence of another excited electron, gives rise to what is called a “satellite"
of a line in the ion (Z+1). (Here, a satellite of the resonance line 1s2p-»1s”). These lines
can be useful for plasma diagnostics.

The total rate of dielectronic recombination for a complex ion is given by a
generalization of formula (4.31), in which individual A— and W(®- values are replaced by
total decay and autoionization probabilities:

(diel) 4a’ <1r L )3/2 : OB, 42,1 WO,
d

B (T = 5z, T kpT, 4
L App
. - w(a; L;‘A (4.32)
" +
wo Ty 7 T

Because of the exponential factor in the resonant capture coefficient, dielectronic
recombination usually is not important if k T < - o (smallest E1 transition eneray).
However, at high temperatures, it usually exceeds the rate of radiative recomination.
Figure 4.8, taken from A. Burgess' historic paper (1964, Astrophys. J. 139, 776), illustrates

this point for He'. These curves cross at a temperature kBT = 0.13 AE (1s, 2p).
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FIG. 4.8. He' + e recombination rate coefficients B.

By using hydrogenic wavefunctions, Burgess was able to obtain an approximate
formula for the total dielectronic rate coefficient of low-Z ions (Z<20). It is

3/2 -A /'kaT 3
(diel) -11 1H anl e cm
BURGESS 8 - 48x10 I—Te B(Z+1) §, fml.,d(xm) e sec ' (4.33)

m

where the summation is over singly excited states "m" of the more—ior_lized ion, and where

Z+1 = charge of recombining ion \
BZ) = 2% (zs1)¥2 /(22 + 13.4)%
SA(X) = X*/(1+0.105% + 0.0150%) » (4.342)
Xy = OBy, A2+
Y = 1.0+0.015Z%/(1+2)* . }

In the mid-seventies, A. Merts of LASL pointed out that this expression is reasonably
accurate (~ factor 2) for recombinations in which the least energetic excitation of the
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already-bound electron does not involve a change of quantum number, a so—called "An=0"
case. For "An#0" cases, Merts recommended, instead of the formula.4(x) in Eq. (4.34a),

the formula

A'®) = 0.5%/ (1 +0.210x + 0.030x%) . (4.340)
With this modification, the general result is known as the "Burgess-Merts" formula. It has
been found recently that, for Z~30, the Burgess—Merts formula does not accurately
represent the recombination involving individual stabilizing transitions, m-1. However,
the total rates, summed over m-values, are fairly accurate. Whether it works at all for
very high ionic charges is unknown.

For cases where the predominant stabilizing radiative decay (T d-bl‘l) involves a
change of principal quantum numbers of the inner electron (An#0 cases) some scaling
properties of the dielectronic rate coefficient can be extracted from the general

dependences

A =Z*10° sec”?, w® o (z°/n”) 10** sec™*, g(z.n)~n® . (4.35)
Here, n is the principal quantum number of the outer electron in the doubly-excited
state. Putting these results into the simple expression (4.31) shows that dielectric

captures into level n are roughly proportional to

(diel) 7% n? |
8 « = , (4.36)
n 1 +n*(z/30)*

which peaks at n = n = (35/Z) ¥/3. As is evident from Fig. 4.9 (for He-like ions), for
high-Z ions only states belonging to low n—values need to be considered, but for low Z ions
hundreds of levels need to be considered. No wonder tables of rate coefficients are sparse!

The inverse of dielectronic recombination — as discussed here — is the two-step
process of photoexcitation — autoionization. To date, no one has investigated problems in
which the intensity of radiation is sufficient to warrant the inclusion of this process.
Indeed, it is likely that such an intense radiation field would fully ionize a plasma very
quickly.

The study of dielectronic recombination is particularly active now. The first
experimental data - all for low-Z ions — have just become available in 1983; and several
major computational efforts have been launched within the past three years. An excellent
review of the field prior to 1980 was given by Dubau and Volonté (1980, Rept. Progress.
Phyeics 43, 199).
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FIG. 4.9. n-dependence of He-like jon dielectronic recombination rate coefficients
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lonization Equilibrium

All of the processes we have just described can affect the ionization balance in a
plasma. Fortunately, one usually can disregard some of them in any given situation. For
steady-state problems, i.e., those in which ionizatioh balance is time-independent, there
are three well-defined equilibria that occur in the absence of radiation:

° "coronal equilibrium" — a function of Te only, and valid only at low densities:
collisional ionization = (radiative + dielectronic) recombination (4.37)

®  "collisional-radiative equilibrium" - a function of T o and N o’ and appropriate to
intermediate densities:

collisional ionization = (radiative + dielectronic + 3;body) recombination (4.38)
[ "collisional equilibrium" - a function of Te and Ne' and valid only at high densities:

collisional ionization = (3-body) recombination (4.39)
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For plasmas in which ionization is predominantly due to a radiation field, one has a fourth
case:

L "photoionization equilibrium" — a function of T & N & and U o and valid only at low
densities:

photoionization = (radiative + dielectronic) recombination (4.40)

Plasmas in photoionization equilibrium are common in astronomy (interstellar gas,
quasars, planetary nebulae), and for a discussion of the basic physics see Osterbrock
(1974), “Astrophysics of Gaseous Nebulae". Plasmas in thermal equilibria are discribed by
the Saha-Boltzman equation. '

The most complete study of coronal equilibria is by Post et al. (1978), At. Data &
Nuclear Data Tables, 20, 397. Their charge-state distribution of iron is reproduced in Fig.
4.10. Figure 4.11 also pertains to the coronal equilibrium model. It shows, as a function
of nuclear charge and electron temperature, the predominant ground-state configuration.
For example, at 1 keV, there are still a few 34 electrons bound to element #47 (silver).

1.0 L] LA rlITT1 L ' fl’ll]'] L] T LR LB

IRON .
CE +24 .J

Charge-state fraction

T, (keV)

FIG. 4.10. Coronal equilibrium of iron. (Figure courtesy of R. Hulse, Princeton PPL.)
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FIG. 4.11. Temperature at which each closed subshell configuration of an element Z is
predominant, in coronal equilibrium plasma. (Figure courtesy of D. Post, Princeton PPL.)
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The collisional-radiative model was first discussed by Bates, et al., (1962), Proc.

Royal Soc. (London), A267, 292, for hydrogenic systems. For this equilibrium, one defines
effective ionization and recombination rate coefficients that include all of the cycling of

electrons through excited states. Thus,

Nn _ __effective ionization rate coefficient (4.41)
Nz ~ effective recombination rate coefficient : :

High and low density limits of the effective recombination rate coefficient computed by
Bates et al., are reproduced in Fig. 4.12.
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FIG. 4.12. Variation with temperature of the effective recombination rate coefficient 8,
in the limits of high and low electron density No. [Figure from Bates et al. (1962).]

Spectral Line Shapes
Although we have been treating atomic transition energies as being precisely the

difference of two eigenvalues, spectral lines are not monochromatic. There is a minimum

uncertainty,

S8Ep > f/tp (4.42)
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in every excited-state eigenvalue, owing to the state's finite lifetime in vacuo:

-1
T = A, (4.43)
r=|,&.. °TT
states

By analogy with Larmor's treatment of a classical, damped harmonic oscillator, one finds
that the distribution of intensity within a spectral line is given by the Lorentz formula

Yrad do
1 (0)do = (322) e Lo (4.44)
L 2 (0o J + (v/2)°

where o 0™ AE/h is the central frequency for the transition I'-I'', and where

- -1 (4.45)
Yrad = ' * 7

is termed the radiation width of the line; it corresponds to the classical oscillator's

damping constant. Here, and in what follows the normalization is J [(w)dw = 1.

For an emitting gas at a finite temperature, motions of radiating ions give rise to
Doppler broadening, which by itself produces a Gaussian line shape,

Idu) do = exp |- (Kg) ;',—7“ R (4.46)
D

with the Doppler 1/e width being

A“'D =(°;—°> /::::: . (4.47)

Almost always, these two broadening mechanisms operate completely independently
of each other, and so the line profile resulting from their combined action is given by the
convolution of (4.44) and (4.46),

do @9 Yrad )
lw)do = H Y vl B (4.48)
by (Mb 2hay,

where the Voigt function (cf. Armstrong, 1967, J.Q.S.R.T. 7, 67),

(4.49)

H(x,a) =1§r f“ ﬂ(‘l’@l

» (u-x)®+a’
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is itself a function of the displacement from line center, 0-o o' and the so—-called Voigt
parameter

/ 2h0, . (4.50)

2="Yrad D

Figure 4.13 plots the Voigt function for several values of a.

H (x, a)

&%

3 4 5 6
X

FIG. 4.13. The Voigt function H(x,a). [Figure from Armstrong (1967).]

For plasmas of low density (say, N, < 10**/cm®) the Voigt function, for Doppler
and natural broadening, usually constitutes an acceptable description of a line's shape.
Unfortunately, in plasmas of even moderate density, the picture is greatly complicated by
Stark broadening, which is pressure broadening by charged particles. The central idea is
that each ion radiates while "under the influence" of innumerable perturbing ions and
electrons. Although elegant theories exist to treat this problem in principle, in practice
Stark broadening usually is simplified by two major approximations:
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1. Perturbing electrons are treated as abrupt collisional interruptions that change
the phase of a radiating ion. If these collisional interruptions occur with a frequency

Y, =N, (Qv) , (4.51)

where 6 is some effective cross section, then according to Lorentz, one must generalize
Eq. (4.44) by putting

Yrad ® YL = Yraa * %Y (4.52)
Refined theories exist to aid in the calculationofve: these theories show that this
collisional, or impact, broadening also is accompanied by a shift Aoe of the central
frequency away from o o Griem's (1974) text, "Spectral Line Broadening by Plasmas,"
presents a thorough discussion of this topic.

2. Perturbing ions are treated as the source of an electric field,

& =1 &. (4.53)
ions

that is nearly static on timescales ~ l”rad' This microscopic fleld shifts and mixes
levels of the radiating ion. And, because it splits substates having different projection
quantum numbers M of the ion's total angular momentum, it gives rise to line broadening
too. Hydrogenic ions experience a perturbation in first order (linear Stark effect), while
other ions experience a perturbation only in second order. In either case, what is required
for the line broadening problem is the distribution P(|&|) of field strengths & for the
plasma, in order to weight all possible Stark splittings. [For details on this topic the
reader is urged to consult the recent paper by Iglesias, et al., (1983), Phys. Rev. A28,
361.] Figure 4.14 shows some P(&£) curves for various values of the plasma parameter

T =(Ze®/ RkT) , (4.54)
where R, the typical interionic separation, is defined according to 41rR’Ni°n/3 =1. AsT
increases, the ions in a plasma are forced into a more ordered arrangement, so (because of
greater cancellation) the mean field is weaker.

Altogether then, we can expect shapes of spectral lines arising in plasmas to have
the form
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FIG. 4.14. Probability distribution of plasma ion field strengths, measured in units Ze/R 2,
for different plasma parameters I'. The two curves for I'=0 represent the field of all ions
(Holtsmark), and the field of just the nearest-neighbor ion.

® 0w -0 -Ao(&) Y
o) ~ d&P(&) H 2 2 - ] , (4.55)
subgates 0 [ A"b ZA"'D

where Aw(&) is the line shift due to the Stark effect. Figure 4.15 shows a calculated
plasma-broadened line, under high resolution. The parameters of this He-like Argon
plasma correspond to a published laser implosion experiment at the University of
Rochester. The details of this calculation are described in the article by Weisheit and
Pollock, in "Spectral Line Shapes" (1981).
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